LabVIEW

Hands-On: Designhing Reusable LabVIEW Code Using
Software Architectures (State Machines)

[gNdoTo TN Totu o] g TN o Iy =L <l 1V F= ol a1 =SSP 3

LABVIEW State IMACKTNES. ... i iueiiieiiiieeiteete sttt sttt st h ettt e s b et ee e s bt e bt e an e s bt e n e eanesbe e bt eanesreesreennesaees 3
LabVIEW VENAING MACHINE ..ciuiiiiiiiii ettt sttt et sttt e s s tae e e st te e e s bt e e e sabbee e sbbaeesabbeeesbbaeessstaeesasaeeesnsseeesnsseaennns 3
LabVIEW Vending Maching State IMaChinguiiiciiiiiiiiii sttt sttt see e st e s sbae e e sbae e s sbaeessbaeessabaeesnasneesnnns 3
LabVIEW Vending Maching Stat@ DIi@gIamc.eeeuieiuieriie et eiee sttt e stte st e st e st e aeeebte e bt e sabeesabeesaeeebeesabeesnseesntesnseeeanes 4
Evaluating the LabVIEW Vending Maching COOEciiiiiiiiiiiiiiiiiiie ittt siee e siiee st e sieee s ssiae e e ssiteeesaaeeessbseeessseeessssnaesnns 5
Exercise 1: Add A New State to State MacChine ..ot st e 6
Exercise 1: Add A New State to State Machinecccocvviiiiiiiiiiiiiii s 6
LCTo - 1T 6
Yol =T T o TSP U PO PR PR PR 6
[DL=Tol] o] o] o T SO P PP PPPPPUPPPRPPPPPON 6
New LabVIEW Vending Maching State DIagramccueeruiiiieeiieiite st e st esteeetee st e st siaeesteesbeesaseessseesneesnseesnseesseessseanses 6
[@fo] ol =T o] A3 @o 1Y =T =T I PSPPSR 7
Y] AU« ISP PP SOPPPPPUPPRRROPPRIIRY 7
Exercise 2: Add Transition LOZIC 10 A NEW SEAtEccuuiiiiiriiiieiiierie ettt sttt ettt e st e st e e stee et esbeesateesseeeseessnesnseesnseenans 11
(CTo -1 TP PP P PPN 11
R o= o= 1 T TN 11
(D L=T Yol o) o] o [ST PUPP SRR 11
[Ofo T ol=T o] A3 @o V=T =T I PP PPPOUPPRINE 11
K] A TSP P PP PPUPRRINN 11
Exercise 3: Change the State Maching Or0erc.uuiiiiiii ittt st e et e e s sate e e s bte e e s baeeesbteeessaeeessseeessenaean 14
(CTo Y- 1 PO O SU PP PUSRPROROt 14
Kol =T o - [o TP PPN 14
(D L=T Yol o) o] o [T UPPP RO 14
[OfoY g Yol=T o] K3 o V7T =T I P USSRNE 14
Y] AU« T PP PP PPPPTRRRS 14
Optional - Exercise 4: Implement LabVIEW State MaChine........ccveiiciiieiiiiiie e ccireeceireeestree s treeestaeeesraeeestneeenaraeeenanens 18
(CTo -1 TP TP PTPTORPPROTOt 18
Kol =T o - [o TP PR 18
(D L=T Yol o) o o [TSP RREPR PP 18
(@0 ol=Y o] K3 @o V7T =T I PSPPI 18
=10 | o T U PP UPUUPPPPPPPPPPPNt 18
Optional - Exercise 5: Add a New State to the Implemented LabVIEW State Diagramcccceeeeieeeeeiieeeccieeecsineeeeeeee e 19
LCTo T 1 TP OO P O PSP PR PPRURRPRPTOOt 19
R ol =T o - T O 19
(D T=TYol o) i o [PPSR 19
(@ g Yol T o K3 @01 VZ=T o =T SRRt 19

INTRODUCTION TO STATE MACHINES

The State Machine is one of the fundamental architectures LabVIEW developers frequently use to build
applications quickly. State Machine architecture can be used to implement complex decision-making algorithms
represented by state diagrams or flow charts.

State Machines are used in applications where distinguishable states exist. Each state can lead to one or multiple
states, and can also end the process flow. A State Machine relies on user input or in-state calculation to determine
which state to go to next.

State Machines are most commonly used when programming user interfaces. When creating a user interface,
different user actions send the user interface into different processing segments. Each of these segments will act
as states in the State Machine. These segments can either lead to another segment for further processing or wait
for another user event. In this example, the State Machine constantly monitors the user for the next action to take.

LABVIEW STATE MACHINES

Each state in a State Machine does something unique and calls other states. State communication depends on
some condition or sequence. To translate the state diagram into a LabVIEW diagram, you need the following
infrastructure:

e While loop — continually executes the various states

e (Case structure — each case contains code to be executed for each state
e Strict Type Def Enum Control — used to represent the states

e Shift register — contains state transition information

e Transition logic — determines the next state in the sequence

LABVIEW VENDING MACHINE

The LabVIEW Vending Machine Application is designed to accept change and distribute a soda when the change
has reached the appropriate amount. This application was developed using a state machine diagram and LabVIEW
state machine architecture.

LABVIEW VENDING MACHINE STATE MACHINE

The LabVIEW Vending Machine application has the following requirements:

e All Soda products are sold for 50 cents.

e The machine only accepts nickels, dimes, and quarters.

e Exact change is not needed.

e Change can be returned at anytime during the process of entering coins.

LABVIEW VENDING MACHINE STATE DIAGRAM

For this example, our state diagram will have six states. The states we will be using are:

1.) Initializing — The Initializing state will initialize the Vending Machine

2.) Waiting — The Waiting state will wait until a user performs an action

3.) Accepting Change — The Accepting Change state will accept the deposited change and update the
deposited amount in the state information. The transition logic for the next state is decided based on a
comparison to the deposited amount and the cost of a soda. If the user has entered enough money, the
next state will be Vending, otherwise the next state will be Waiting.

4.) Vending — The Vending state will distribute the soda and transition to the next state of Distributing
Change.

5.) Distributing Change — The Distributing Change state will determine the change that is owed to the user
and will distribute this amount.

6.) Exiting — The Exiting state will shut down and exit the Vending Machine application

—— money deposited =3 ACCEPTING

INITIALIZING > WAITING
<€~ deposited <.50 cents = CHANGE
EXITING
return
change
pressed deposited
=
.50 cents
DISTRIBUTING
CHANGE
VENDING

To download the exercise manual and LabVIEW code, go to http://bit.ly/StateMachinelLV.

http://bit.ly/StateMachineLV

EVALUATING THE LABVIEW VENDING MACHINE CODE

To get started evaluating the behavior of the LabVIEW Vending Machine application, open the LabVIEW project
LabVIEW Vending Machine.lvprj and then double-click the LabVIEW VI LabVIEW Vending Machine.vi in the
project window. Run the LabVIEW Vending Machine application and complete the following series of actions: to
observe the behavior of a soda being dispensed once the change reaches .50 cents.

a. Select a Quarter, Dime, Nickel, Quarter: You will notice that a Coke is dispensed and .15 cents is returned.

b. Select a Quarter, Dime, Nickel. Select the Pepsi button and then enter another Quarter: You will notice

that a Pepsi is dispensed and .15 cents is returned.

14 LabviEw Vending Machinevi Black Diagram an LabVIEW Vending Machine lvpraj/My Computer

=)o]

File

Edit Yiew Project Operate Tools

Window Help

o [O@|L§u|lﬁ' a | 15pt Application Font |~ ”E;.v ”'.T]Ev”@v ||:L'-ﬁ|

+| Search

[
1

5

A 2]

Machine State

i"InitiaIizim 'I—

The Accepting C
and update the
transition logic
the deposited a
enough money,

state will ba Wai

= State Informationf

v |—|Machine State'—

Valug

[

LabVIEW Vending Machine

-~

13 LabVIEW Vending Machinexi

File Edit View Project

Operate Tools

Window Help

n# @ 1

=

~

-

Value Desposited
0.65

{ Return Change y

LabVIEW Vending Machine lvproj/My Camputer «

I

Value Returned

fos

-

Q
A -
7
3
Q

m

<W> Server: localhost | < |

m

EXERCISE 1: ADD A NEW STATE TO STATE MACHINE

GOAL

We would like to add a new state to the LabVIEW state machine. This new state will accept a soda selection (Coke
or Pepsi).

SCENARIO

We have added two buttons to the LabVIEW application to allow the user to select between a Coke and a Pepsi,
but have we do not have a state to represent the machine accepting the user soda selection. We would like to add
a new state to the LabVIEW state machine. This new state will accept a soda selection (Coke or Pepsi). We will call
this new state “Accepting Soda Selection”

DESCRIPTION

The State Machine.ctl is a Strict Type Def Enum Control that is being used in the LabVIEW Vending Machine
application to transition between the states. Strict Type Def controls enforce that when any changes are made to
the control file, all calling applications will bind and update to reflect these changes. This means that when we add
a new item to the Enum to represent a new state, all references of this control in the LabVIEW Vending Machine
application will be updated to include the new state as well.

NEw LABVIEW VENDING MACHINE STATE DIAGRAM

The Accepting Soda Selection state will accept the soda selection and determine if enough money has been
deposited to receive this soda. The transition logic for the next state is decided based on a comparison to the
deposited amount and the cost of a soda. If the user has entered enough money, the next state will be Vending,
otherwise the next state will be Waiting.

—— moneydeposited —>» ACCEPTING

INITIALIZING > WAITING < CHANGE
ST soda deposited
button <
return pressed .50 cents
change
pressed
ACCEPTING SODA
SELECTION
DISTRIBUTING
CHANGE deposited
=
.50 cents

|

VENDING

CONCEPTS COVERED

e Adding a new state to a LabVIEW state machine
e Editing Strict Type Def Enum Controls

SETUP

1. Open the LabVIEW Vending Machine.vi from the LabVIEW Vending Machine.lvproj.

2. On the Block Diagram, open the Machine State enum in which a new state should be added

a. Locate the Machine State.ctl control on the LabVIEW Block Diagram.

= State Information

¢ “Machine State
+Initializing ~

Yalue Desposit
. ':I..lt

][achine State

b. To open the control for customizing, right-click on Machine State.ctl and select
Advanced»Customize.

Descnption and hip...

Machine State

{ﬂInitiaIizin: + Data Operations

»

Adapt To Entered Data

F‘:-%|'II-%';-%I'IT-.'ITI-ZII'I

Display Format...

Disahle Item

Note: Machine State.ctl can also be accessed in the project Window.

3.

Edit the items in the Machine States.ctl Strict Type Def Enum Control to represent a new state of
“Accepting Soda Selection”

a. Toopen up the Enum Properties Window that will allow you to edit items in the Machine State
Enum control, right-click and select Edit Items.

I8 MachineStates.ctl Strict T Description and Tip..

File Edit View Project Replace

»
Strict Typ Data Operations b
»

Advanced

Representation 3

Machine State

i [a]

Display Format...

| [=]

Initializing Select tem N
Add Item After

Add Item Before
Femove Item

Disahle Item

A

b. Select the Edit Items tab In the Enum Properties: Machine State editor window.

c. Inthe Edit Items Tab, double-click under “Distributing Change” to add a new entry at the bottom
of the Items list. Name this new item “Accepting Soda Selection” Click OK when you are finished.

13 Enum Properties: Machine State @

Appearance | Data Type | Display Format | Editltems | Documentation LN

Ttems Digital Display - ’ Insert]
Initializing !

| Delete |

Exiting L
Waiting 2 ’
4

Maowve Up]

Accepting Change

Yendi
v.enc.mg IMove Down

|Accepting Sada Selection |

Allow tnedermee valt=s at run time

d. Save and close Machine States.ctl. Notice that when you click the Machine State control on the
LabVIEW Vending Machine Block Diagram, you now have a new option for “Accepting Soda
Selection.”

IMachine State I
¢ Initializing

Exiting

Waiting
Accepting Change
WVending

Distributing Change

Accepting Soda Selection

Important! Ensure that you do not actually select the “Accepting Soda Selection” item from the
Machine State control on the LabVIEW Vending Machine Block Diagram. The beginning state
should remain “Initializing.”

4. Add the new state “Accepting Soda Selection” to the Case Structure on the LabVIEW Vending Machine
application. Adding this state to the Case Structure will add it to the implemented LabVIEW state
machine.

a. To easily add the new state to the LabVIEW Vending Machine application, right-click the Case
Structure on the LabVIEW Block Diagram and select Add Case for Every Value.

Visible temns 3
Help
€T P& Examples
Description and Tip...
We | Breakpoint 3
e Co Structures Palette 2

will | Auto Grow
12 ne Exclucle from Diagram Cleanup
CLrre Replace with Stacked Sequence

Remove Case Structure

Add Case After

3— Add Case Befare

Duplicate Case
Delete This Case

Add Case for Every Value

b. Notice that you can now select “Accepting Soda Selection” from the Case Structure. This is
because this state has been added to the Case Structure through the changes made to the Strict
Type Def Enum. Transition logic will be added to this state in the next Exercise.

| "Accepting Sada Selection” [

EXERCISE 2: ADD TRANSITION LOGIC TO A NEW STATE

GOAL

Now that we have added the new Accepting Soda Selection state, we need to add transition logic to it.

SCENARIO

We have added the new Accepting Soda Selection state to the state machine and now we need to add transition
logic to it. This new state will accept the soda selection and determine if enough money has been deposited to
receive this soda. The transition logic for the next state is decided based on a comparison to the deposited amount
and the cost of a soda. If the user has entered enough money, the next state will be Vending, otherwise the next
state will be Waiting.

DESCRIPTION

This new state will accept the soda selection and determine if enough money has been deposited to receive this
soda. The transition logic for the next state is decided based on a comparison to the deposited amount and the
cost of a soda. If the user has entered enough money, the next state will be Vending, otherwise the next state will
be Waiting.

CONCEPTS COVERED

e Adding logic to a new state within a LabVIEW state machine

SETUP
1. Add transition logic to the “Accepting Soda Selection” state to determine the next state: “Vending” or

“Waiting”

a. Go to the Accepting Soda Selection state by clicking the Case Structure and selecting “Accepting
Soda Selection”

ﬂ"l "Accepting Soda Selection” - = L
"Waiting", Default
"Accepting Change"

ny

Vencing”

"Distributing Change”
"Initializing"
"Exiting”

J "Accepting Soda Selection™

|

b. The “Accepting Soda Selection” state will accept the soda selection and determine if enough
money has been deposited to receive this soda. If the user has entered enough money, the next
state will be Vending, otherwise the next state will be Waiting. The following code implements
this transition logic and should be added to the “Accepting Soda Selection” state in the Case
Structure.

V.

Drop down the Unbundle by Name control. To do this, navigate to
Programming»Cluster, Class & Variant and select the Unbundle by Name function.
Drop this function on the Block Diagram in the “Accepting Soda Selection “state in the
Case Structure.

Wire the State Information data cluster into an Unbundle by Name function and
expand the Unbundle by Name function to expose the Value Deposited and Cost data.

= State Informationg i

|

MMachine State

Use the SubVI Check Deposited Amount.vi to compare Value Deposited and Cost. To
do this, drag Check Deposited Amount.vi from the Project Explorer and drop it to the
right of the Unbundle by Name function. Wire the Value Deposited and Cost values
from the Unbundle by name into the Check Deposited Amount.vi inputs.

= State Informationg

Check Depasited Amaunt.vi

v

2

FMachine State

|

Use the Select function to determine the next state. To do this, navigate to
Programming»Comparison and select the Select function. Drop this function to the
right of the Great or Equal? function. Wire the output of the SubVI Check Deposited
Amount.vi into the Select function.

= State Informationf

- Check D ited & v
=] 1achine State ; SE CEposted Amonnty

Use the Machine States.ctl controls to dictate the next state. To do this, drag two copies
of the Machine States.ctl from the Project Explorer and drop them to the left of the
Select function. Wire one into the top input terminal and the other into the bottom

input terminal of the Select function. Select Vending on the top input and Waiting on
the bottom input. Wire the output terminal of the Select function into the Machine
State terminal.

true: next state

*Wending *

heck Depaosited Amountvi

e “‘ﬁp-

=

false: next state

vi. Wire the State Information cluster through the Accepting Soda Selection state in the
Case Structure.

true: next state

+Yending ™

Check Depaosited Amountvi

I L

=T

false: next state

Save and Run the LabVIEW Vending Machine application with the new “Accepting Soda Selection” state
and transition logic. While the application is running select any combination of change to be entered into
the LabVIEW Vending Machine. Complete the following steps while the application is running to observe
the behavior of a soda being dispensed once the change reaches .50 cents.

a. Select a Quarter, Dime, Nickel, Quarter: You will notice that a Coke is dispensed and .15 cents is
returned.

b. Select a Quarter, Dime, Nickel. Select the Pepsi button and then enter another Quarter: You will
notice that a Pepsi is dispensed and .15 cents is returned.

EXERCISE 3: CHANGE THE STATE MACHINE ORDER

GOAL

Now that we have added the new “Accepting Soda Selection” state and implemented new transition logic to it, we
need to change the transition logic in the Accepting Change state, Coke and Pepsi selections.

SCENARIO

Upon adding the new state “Accepting Soda Selection”, the state machine transition logic and order should be
modified.

DESCRIPTION

The “Accepting Change” state should be updated to transition to the next state of Waiting. The state machine will
achieve the “Accepting Soda Selection” state when a user presses either the Coke or Pepsi button, so the
transition logic in the Coke and Pepsi Events should be updated to reflect this change.

CONCEPTS COVERED

e Changing the transition logic of a LabVIEW state machine

SETUP

1. Change the next state of “Accepting Change” to be Waiting
a. Select the “Accepting Change” state in the Case Structure

b. Delete the following functions:
e Check Deposited Amount.vi (Sub VI)
e true:next (Strict Type Def Enum)
o false:next (Strict Type Def Enum)
e Select (Boolean)

Yalue Despaosited
’

Make sure to delete the broken wires after completing this.

c. Collapse the Unbundle by Name function to only expose Value Deposited

"Accepting Change” - [

The Accepting Change state will accept the deposited change

and update the deposited amount in the state information. The
transition logic for the next state is decided based on a comparison to
the deposited amount and the cost of a soda. If the user has entered
enough money, the next state will be Vending. otherwise the next
state will he Waiting.

Yalue Desposited
FOEL |

Yalue Despasited

d. Create the transition for the next state by right-clicking on the Machine State exit terminal and
selecting Create»Constant.

A .|
4 Use Default If Unwired
FMumeric Palette 3
Ceme | Comm]

. Control
—— Properties

Indicatar

Shared Vanable Made p

e. Declare the transition logic to drive the next state to Waiting. To do this, change the Machine
State constant value to be “Waiting”

2. Change the Transition logic of the Pepsi and Coke buttons to dictate the next state of ”Accepting Soda
Selection”

a. Select the “Waiting” state in the Case Structure.

b. Select “Coke”: Value Change event in the Event Structure.

c. Delete the Machine State wire that is running through the “Coke”: Value Change event

| [4] "Cake™: Value Change "'H—

When the user selects the Coke hutton. the
state information cluster will be updated to
indicate this selection. The next state will
| remain the same as the current state.

Io Cake v|—| Soda H’)ﬂj

! j

d. Create the transition for the next state by right-clicking on the Machine State exit terminal and

Cake

selecting Create»Constant.

U 4 =

4 Use Default If Unwired
— Linked Input Tunnel 2

Fumeric Palette 3
P Ccte V| Comam
. Contral
mmm Properties)
Indicatar

Shared Vaniable Mode p

e. Declare the transition logic to drive the next state to Accepting Soda Selection. To do this,
change the Machine State constant value to be “Accepting Soda Selection”

2 [[4] "Cake": Value Change ¥ p————

When the user selects the Coke button, the
state information cluster will be updated to
indicate this selection. The next state will
| remain the same as the current state.

|4> Cake v|—| Sadla H‘)ﬂj
& [*Accepting Soda Selection

Cake

f. Repeat steps c-e for the “Pepsi”: Value Change event

= |[5] "Pepsi”: Value Change "H—

Pepsi

When the user selects the Coke button. the
state information cluster will be updated to
indicate this selection. The next state will
| remain the same as the current state.

[+ Pepsi v|—| Soda

—1 Frﬁkccepting Sada Selection *l—r*

Save and Run the LabVIEW Vending Machine application with the new “Accepting Soda Selection” state
and transition logic as well as modified transition logic to the Accepting Change state, Coke and Pepsi
selections. While the application is running select any combination of change to be entered into the
LabVIEW Vending Machine. Complete the following steps while the application is running to observe the
behavior of a soda being dispensed once the user makes a soda selection and the change has reaches .50

cents.

a. Select a Quarter, Dime, Nickel, Quarter. Then select the Coke button: You will notice that a Coke

is dispensed and .15 cents is returned.

b. Select a four Quarters. Select the Pepsi button: You will notice that a Pepsi is dispensed and .50

cents is returned.

OPTIONAL - EXERCISE 4: IMPLEMENT LABVIEW STATE MACHINE

GOAL

Implement a LabVIEW State Machine based on a State Diagram.

SCENARIO

You have a state diagram for a simple data acquisition application that you would like to implement in LabVIEW.

DESCRIPTION

Evaluate the State Diagram provided for a simple data acquisition application and write a LabVIEW application that
implements the program flow.

CONCEPTS COVERED

e Implementing a LabVIEW state machine from a state diagram

SETUP

Use the following state diagram to implement a LabVIEW state machine to acquire data and present it.

INITIALIZING ——> WAITING

N
acquire exit
button button
pressed pressed

ACQUIRING > PRESENTING EXITING

OPTIONAL - EXERCISE 5: ADD A NEW STATE TO THE IMPLEMENTED LABVIEW
STATE DIAGRAM

GoAL

Implement a new state in the LabVIEW State Machine based on a new state in the State Diagram.

SCENARIO

You have a state diagram and an implemented LabVIEW state machine for a simple data acquisition application,
but you would like to add analysis to the LabVIEW state machine.

DESCRIPTION

Evaluate the updated data acquisition State Diagram with a new Analyzing state. Update the implemented
LabVIEW state machine to include the new Analyzing state. Ensure that you change the transition logic to
necessary states.

CONCEPTS COVERED

e Adding a state to a LabVIEW state machine based on a new State Diagram

SETUP

Use the following updated state diagram to add the new Analyzing state to the LabVIEW data acquisition state
machine.

INITIALIZING ~————> WAITING

A
acquire exit
button button
pressed pressed

ACQUIRING —_—> ANALYZING ——> PRESENTING EXITING

